
.

Facial Animation Framework for the Web
and Mobile Platforms

Igor S. Pandzic
Department of Electrical Engineering

Linköping University, SE-581 83 Linköping
+46-13-281 889
igor@isy.liu.se

ABSTRACT
Talking virtual characters are graphical simulations of real or
imaginary persons capable of human-like behavior, most
importantly talking and gesturing. They may find applications on the
Internet and mobile platforms as newscasters, customer service
representatives, sales representatives, guides etc. After briefly
discussing the possible applications and the technical requirements
for bringing such applications to life, we describe our approach to
enable these applications: the Facial Animation Framework. This
framework consists of (1) a lightweitht, portable, MPEG-4
compatible Facial Animation Player, (2) a system for fast production
of ready-to-animate, MPEG-4 compatible face models and (3) a
plethora of MPEG-4 compatible tools for Facial Animation content
production. We believe that this kind of approach offers enough
flexibility to rapidly adapt to a broad range of applications involving
facial animation on various platforms.

Categories & Subject Descriptors
H.5.1 Multimedia Information Systems – Animations; Artificial,
augmented, and virtual realities
H.5.2 User Interfaces (D.2.2, H.1.2, I.3.6) -- Auditory (non-
speech) feedback , Graphical user interfaces (GUI) , Natural
language , User-centered design

General Terms: Algorithms, Design, Human Factors

Keywords: Facial Animation, Virtual Characters, Virtual
Humans, Talking Head, MPEG-4, FBA, VRML, Visual text-to-
speech, facial motion cloning

1. Introduction
With the recent expansion of various services to the Internet, and
expected expansion into mobile, new applications for Virtual
Humans technologies can be identified. We believe in particular that
talking virtual characters, such as [19, 23, 20, 30, 13, 6, 28, 12, 4,
21, 7, 5, 8, 16], can provide novel services such as virtual hosts,
salespersons, newscasters and other.
We briefly discuss these potential applications and the technical
requirements for bringing such applications to life in Section 2. As
background information essential for understanding this article, we

very shortly introduce the MPEG-4 Facial Animation standard in
Section 3.
We describe our Facial Animation Framework for the Web and
mobile platforms, as outlined in Figure 3, in three main sections.
Section 4 deals with the Facial Animation Player. The player accepts
facial animation input in the MPEG-4 FBA format from a wide
variety of sources. Due to its simplicity, it is easy to implement as
well as port and adapt to any platform. Current implementations
include a Java applet and a prototype on the Symbian Quartz tablet
communicator reference design [24]. Section 5 presents our
approach to producing animatable face models, i.e. face models with
the additional information necessary for them to be animated
correctly in the Facial Animation Player. The face model production
follows the widely used and well known principle of morph targets,
but extends it to include low-level facial actions rather than just high
level expressions and visemes. We also significantly simplify the
task of the animator by introducing the Facial Motion Cloning
method to automatically copy a whole set of morph targets from one
face model to another. In Section 5 we present alternatives for Facial
Animation content production ranging from text-to-speech to facial
tracking, all feeding content to the Facial Animation Player. Finally,
in the concluding section we summarize the advantages of our
approach.

2. Applications
With the trend of moving services on-line and, in the near future,
making them accessible through mobile terminals, we believe that
human-like virtual characters can lend a personality and a more
human touch. A talking person, even a virtual one, can be more
pleasant and more persuasive than just text and graphics.
Additionally, as outlined in [15], the virtual character may in certain
situations alleviate the (sometimes unavoidable) network waiting
times by “entertaining” the user. The same study has also shown that
the end users show a preference for a service enhanced with a virtual
character to a plain text service.
If correctly implemented, virtual characters have low bandwidth
requirements and high interaction capacity, making them a natural
replacement for video streaming in “talking head” scenarios.
Combined with facial feature tracking, this technology can
potentially be used for a very low bitrate visual communication, in a
model based coding scenario [9, 10, 22].
We believe that we are just beginning to recognize possible practical
applications, and what is presented here may well be just the tip of
the iceberg. We can broadly classify the emerging application areas
in the following categories:

• entertainment (interactive story telling, talking caricatures)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Web3D’02, February 24-28, 2002, Tempe, Arizona, USA.
Copyright 2002 ACM 1-58113-468-1/02/0002…$5.00.

.

• personal communications (short messages, greetings, visual
email, visual communication)

• navigation aid (virtual guide/host to web sites or services,
tutorial presentations)

• newscasting (virtual newscaster (e.g. Figure 1), personalized
interactive news)

• commerce (customer service, sales (e.g. Figure 2), marketing)

• education (interactive virtual teacher/trainer)

• advanced multimodal Human-Computer Interface

Figure 1. A virtual newscaster; images on the right appear as

she talks (© W Interactive SARL [31])

Figure 2. Virtual sales representative presenting a car model (©

W Interactive SARL [31]) Requirements

Based on these application clases, we can identify the following
requirements, expanded from the ones identified in [17], on the
facial animation system to be used for such applications in the Web
and mobile context:

2.1 Visual quality
It is obvious that virtual characters featured in any of the mentioned
applications must have a visual appeal. They must look attractive,
and animations should look natural. This does not necessarily mean
photo-realistic models, or even very high-resolution models. A fairly
simple cartoon character, if cleverly designed, can be very
appealing. The real implication of this requirement is that any
system hoping for success must provide means for visual artists to
design models and animations, preferably using the tools that they
are already used to, as this is the only reasonable way to promote
creation of appealing content.

2.2 Easy installation
In many of the mentioned applications the virtual character is not in
itself the main attraction of the proposed service, but rather an extra
bonus, an improvement. The users who never used such an
application might be hesitant to install software on their computers
only to experience an unknown improvement of the service. This
creates a barrier. To make the user jump over the barrier, one can
either provide strong incentive in form of attractive marketing, or
lower the barrier by making it easy to install the virtual character
support. Ideally, no installation should be necessary. This means that
the facial animation player must use, to the largest possible extent,
the resources readily available on the target platform, or resources
that are fairly widespread, like popular plug-ins.

2.3 Fast access
Although broadband-for-everyone is being promised by many, the
reality is that most users do not have fast Internet access. Therefore
the new applications involving virtual characters should not require
high additional bandwidth. This implies several things. First, the
virtual human models should not be too complex. Second, they need
to be compressed for download. Third, both audio and animation
data should not only be compressed, but also streamed, rather than
downloaded and played. This allows for a faster response time.

2.4 Content generation
There is a need for an easy, preferably automatic way to generate
content, i.e. speech and facial animation to be played by the facial
animation system. This is because no interesting interaction can be
achieved without enough variety of content. In simple words, a
virtual character that can just say “yes” and “no” is not very
interesting. If generating content is expensive, designing the whole
application will be very expensive. It is preferable to have the
possibility to generate content automatically. In the ideal case, the
speech and behavior of the virtual character is completely generated
on-the-fly, putting no limits to the variety of interaction.
Unfortunately, this is in most cases opposing the requirement on the
quality (the best content is still created with a lot of manual work),
and a compromise must be found. It is therefore desirable to have a
variety of options for content generation with varying levels of
production time/cost and resulting quality. At the same time, it is
essential that switching between these options be painless, which
can be achieved through the use of common standards.

2.5 Platform integration
Whether it appears on the web page or on a mobile terminal, the
virtual character must become an integral part of its environment,
rather than an isolated application. In the context of a Web page, it
should be able to react to users’ actions on the web page, and to
control and change the content of the page. This implies that an
open interface (in form of an API) should exist to make logical links
between the virtual character and its surrounding platform, in both
directions.

2.6 Decision-making
For many services it is desirable for a virtual character to have a
fairly sophisticated decision-making mechanism, possibly based on
AI algorithms like the descendants of Eliza [29] or the A.L.I.C.E.
system [2], to deliver meaningful interactions. The facial animation
system should have mechanisms to connect to such a system and
generate audio-visual content based on the outputs of the decision-
making module.

.

3. Introduction to MPEG-4 Facial Animation
MPEG-4 Facial Animation is central to our view of possible facial
animation architectures, systems and applications (see Figure 3). For
this reason, before going further with this article we need to
introduce the basic notions of MPEG-4 Facial Animation. Beside
the standard itself [11], there are other excellent references [27] [8]
covering this subject. The purpose of this short section is therefore
not to offer in-depth coverage, but to provide just enough
background for understanding the rest of the article. Readers
familiar with MPEG-4 FA may wish to skip this section, or use it
only as a quick reference.
The MPEG-4 specification defines 66 low-level Facial Animation
Parameters (FAPs) and two high-level FAPs. The low-level FAPs
are based on the study of minimal facial actions and are closely
related to muscle actions. They represent a complete set of basic
facial actions, and therefore allow the representation of most natural
facial expressions. Exaggerated values permit the definition of
actions that are normally not possible for humans, but could be
desirable for cartoon-like characters.
All low-level FAPs are expressed in terms of the Facial Animation
Parameter Units (FAPU). These units are defined in order to allow
interpretation of the FAPs on any facial model in a consistent way,
producing reasonable results in terms of expression and speech
pronunciation. They correspond to distances between key facial
features and are defined in terms of distances between the MPEG-4
facial Feature Points (FPs). For each FAP it is defined on which FP
it acts, in which direction it moves, and which FAPU is used as the
unit for its movement. For example, FAP no. 3, open_jaw, moves
the Feature Point 2.1 (bottom of the chin) downwards and is
expressed in MNS (mouth-nose separation) units. The MNS unit is
defined as the distance between the nose and the mouth divided by
1024. Therefore, in this example, a value of 512 for the FAP no. 3
means that the bottom of the chin moves down by half of the mouth-
nose separation. The division by 1024 is introduced in order to have
the units sufficiently small that FAPs can be represented in integer
numbers.
The specification includes two high-level FAPs: expression and
viseme. Expression can contain two out of a predefined list of six
basic expressions. Intensity values allow to blend the two
expressions. Similarly, the Viseme parameter can contain two out of
a predefined list of 14 visemes, and a blending factor to blend
between them.
The specification also defines the Facial Animation Tables (FATs).
The FATs allow to specify, for each FAP (high- and low-level), the
exact motion of the vertices and/or transforms in the 3D model. This
means that the expressions, visemes and low-level FAPs are
described in a way that is essentially equivalent to the mentioned
morph-targets. Animation systems then interpolate and blend
between the values from the FAT.

4. The Facial Animation Player
As Figure 3 shows, the Facial Animation Player is the cornerstone
of our facial animation framework for the Web and mobile
platforms. The Player should be easy to port and adapt to any
platform, accept Facial Animation input from a wide variety of
sources, and be modest in usage of resources.
The first choice we made when designing the player was to make it
MPEG-4 FBA compatible. This guarantees the variety of Facial
Animation content sources, as many developers already support the

standard and this trend is increasing. The choice of MPEG-4 also
ensures very low bitrate needs. The MPEG-4 FBA decoding process
itself is based on integer arithmetic, its implementation is very
compact and it is very modest in CPU usage.

Facial Animation Player

• MPEG-4 FBA compatible
• Lightweight: low CPU &

bitrate usage
• Simple to implement
• Easily portable

Face & Morph Targets
Design

• Appeal to animators by
following their approach

• Simplify the task by
automation: Facial Motion
Cloning tool

• Use any commercial 3D
modeling software

Morph Target Compositor
• Automatic tool
• Take individual morph

targets and produce a single,
compact file

Contents Production
• MPEG-4 FBA compatible
• Range of options in quality,

production time and cost
• In-house or third party

modules
Text-to-Speech

Video tracking

Auto speech sync

Optical tracking
Manual animation

Face Model Production

Neutral face & morph targets as
separate VRML files

An
im

at
ab

le
 fa

ce

m
od

el
 (s

em
i-

pr
op

rie
ta

ry
 fo

rm
at

)

MPEG-4 Facial Animation
bitstreams

Figure 3: The Facial Animation Framework for the Web and

mobile platforms

When the MPEG-4 FAPs are decoded, the player needs to apply
them to a face model. Our choice for the facial animation method is
interpolation from key positions, essentially the same as the morph
target approach widely used in computer animation and the MPEG-
4 FAT approach (see previous section for explanation of FAT).
Interpolation was probably the earliest approach to facial animation
and it has been used extensively [19, 20, 3]. We prefer it to
procedural approaches like [13, 6, 12, 8], and certainly to the more
complex muscle based models like [23, 30, 28] for the following
reasons:

• It is very simple to implement, and therefore easy to port to
various platforms.

• It is modest in CPU time consumption

• The usage of key positions (morph targets) is close to the
methodology used by computer animators and should be easily
adopted by this community

The way it works is the following. Each FAP (both low- and high-
level) is defined as a key position of the face, or morph target. To
stay consistent with the computer animation terminology, we will
use the term morph target throughout the article. Each morph target
is described by the relative movement of each vertex with respect to
its position in the neutral face, as well as the relative rotation and
translation of each transform node in the scene graph of the face.
The morph target is defined for a particular value of the FAP. The
movement of vertices and transforms for other values of the FAP are
then interpolated from the neutral face and the morph target. This
can easily be extended to include several morph targets for each
FAP and use a piecewise linear interpolation function, like the FAT
approach defines. However, current implementations show simple
linear interpolation to be sufficient in all situations encountered so
far. The vertex and transform movements of the low-level FAPs are
added together to produce final facial animation frames. In case of
high-level faps, the movements are blended by averaging, rather
than added together.

.

4.1 Implementation
Due to its simplicity and low requirements, the Facial Animation
Player is expected to be easy to implement on a variety of platforms
using various programming languages. The implementation we
describe here is written as a Java applet and based on the Shout3D
rendering engine [25]. An implementation on the Symbian Quartz
[24] tablet communicator reference design (see Figure 4) is in an
early prototype phase and we will not describe it in detail here.

Table 1: Bandwidth requirements

Total applet size (CAB file) 156K
Applet size (Shout3D) ~130K
Applet size (FA implementation) ~26K
Viseme-encoded FBA bitstreams ~0.3 kbit/s
Low-level FAPs FBA bitstreams 2-6 kbit/s
Audio (GSM 6.10) 13 kbit/s
Face models (medium complexity) ~50K

Table 2: Performance measurements for different face models on
different computer configurations. C1 = P3/600 laptop; C2 =

P3/1000; C3 = C2 with graphics acceleration hardware (ELSA
GLoria II-64)

Frames/second Model Poly-
gons

Size
(KB)

C1 C2 C3
Demy 2800 32 15 24 31
Dummy 1362 50 20 31 41
Jörgen 168 40 32 40 60
Candide 168 4 40 60 60
MIRAface 3692 67 15 24 40
Cm. Lake 16917 284 1.4 1.5 2

4.2 Performance results
We have successfully tested the MPEG-4 Facial Animation player
with several face models as illustrated in Figure 5. We can achieve
interactive frame rates with models of up to 3000 polygons. The
player has correctly interpreted the test FBA bitstreams (Marco,
Wow, Emotions) as well as the bitstreams produced by the text-to-
speech system. As the demonstration web page [18] shows, the
applet is fully controllable from the web page by Javascript, making
all interactions possible.
Table 1 summarizes the bandwidth requirements of this
implementation. The size of the applet might be problematic, due
mostly to the size of Shout3D renderer implementation (the Facial
Animation implementation, including the MPEG-4 FBA decoder, is
fairly small). The face model sizes, as well as facial animation and
audio bitstreams, are very reasonable and content delivery is
satisfactory even on modem connections.
Table 2 shows the performance measurements for different face
models. Performance tests were done on two different computer
configurations. A third measurement was performed using the
graphics acceleration hardware. In order to use the graphics
acceleration, a special plug-in for the browser needs to be installed;

this plug-in allows the Shout3D renderer to use the graphics
acceleration. The results show that the implementation can animate
facial models of medium complexity at interactive frame rates on
fairly modest hardware. Tests were made in the Internet Explorer
browser; most of the measurements were confirmed in Netscape
Navigator as well.

Figure 4: The Facial Animation Player early prototype

implementation on Symbian Quartz using the Candide face
model from Linköping University.

5. Producing Animatable Face Models
In this section we describe our approach to the production of face
models that can be directly animated by the Facial Animation Player
described in the previous section. Figure 3 illustrates the phases of
face model production and how it fits within the Facial Animation
Framework.
We believe that the most important requirement for achieving high
visual quality is the openness of the system for visual artists. It
should be convenient for them to design face models with the tools
they are used to. While numerous algorithmic facial animation
systems have been developed, the best-looking animations in current
productions are done manually by artists or by facial tracking
equipment and performing talent. This manual creation is
painstakingly time-consuming, but some aspects can be automated.
The concept of morph targets as key building blocks of facial
animation is already widely used in the animation community.
However, morph targets are commonly used only for high level
expressions (visemes, emotional expressions). In our approach we

.

follow the MPEG-4 FAT concept and use morph targets not only for
the high level expressions, but also for low-level MPEG-4 FAPs.
Once their morph targets are defined, the face is capable of full
animation by limitless combinations of low-level FAPs.
Furthermore, being MPEG-4 compatible offers access to a growing
wealth of content and content sources.

Figure 5. Examples of face models experimentally animated
using the player: dummy, a model built using 3D modeling

software; Miraface, a model donated by MIRALab, University
of Geneva, to ISO as MPEG-4 reference software; Demy,

designed by Sasa Galic; Jörgen, Candide, source Linköping
University; Commander Lake, source 3DS Max.

Obviously, creating morph tragets not only for high level
expressions, but also for low-level FAPs is a tedious task. We
therefore propose a method to copy the complete range of morph
targets, both low- and high-level, from one face to another. This
means that an artist could produce one very detailed face with all
morph targets, then use it to quickly produce the full set of morph
targets for a new face. The automatically produced morph targets
can still be edited to achieve final detail. It is concievable that
libraries of facial models with morph targets suitable for copying to
new face models will be available commercially. The method we
propose for copying the morph targets is called Facial Motion
Cloning. Our method is similar in goal to the Expression Cloning
[14]. However, our method additionally preserves the MPEG-4
compatibility of cloned facial motion and it treats transforms for

eyes, teeth and tongue. It is also substantially different in
implementation.

Facial Motion Cloning can be schematically represented by Figure
7. The inputs to the method are the source and target face. The
source face is available in neutral position (source face) as well as in
a position containing some motion we want to copy (animated
source face). The target face exists only as neutral (target face). The
goal is to obtain the target face with the motion copied from the
source face – the animated target face.
To reach this goal we first obtain facial motion as the difference of
3D vertex positions between the animated source face and the
neutral source face. The facial motion is then added to the vertex
positions of the target face, resulting in the animated target face.
In order for this to work, the facial motion must be normalized,
which ensures that the scale of the motion is correct. In the
normalized facial space, we compute facial motion by subtracting
vertex positions of the animated and the neutral face. To map the
facial motion correctly from one face to another, the faces need to be
aligned with respect to the facial features. This is done in the
alignment space. Once the faces have been aligned, we use
interpolation to obtain facial motion vectors for vertices of the target
face. The obtained facial motion vectors are applied by adding them
to vertex positions, which is possible because we are working in the
normalized facial space. Finally, the target face is de-normalized.
In the normalized facial space all faces have the same key
proportions, e.g. same distance between the eyes etc. The benefit
is that the magnitude of motion in the normalized space is the
same for different faces and we can therefore apply motion from
one face to another by simple addition. Figure 6B shows an
example of a normalized face.

To define the proportions of the face we use the Facial Animation
Parameter Units (FAPU, see section 3), as specified in the MPEG-4
standard, and the MPEG-4 Feature Points (FP, see section 3). The
regions of the face are determined from the proximity to the FPs.
The appropriate FAPUs are then used as normalization factors for
each vertex. This amounts to scaling the face model with a
regionally changing scaling factor, which is the local FAPU. By
normalizing with FAPUs we make sure that the motion of the
feature points in the normalized space corresponds to the MPEG-4
FAPs.
The facial motion is defined as the difference in vertex positions
between the animated and neutral face. It is expressed by an array of
facial motion vectors, each vector corresponding to one vertex of the
face.

When transferring facial motion from source to target face, we need
to transfer the motion to the corresponding facial region. In order to
achieve this, we compute the motion mappings using the alignment
space where the source and target face are aligned with respect to
the feature points.
To achieve the alignment, the normalized faces are first mapped into
2D space using cylindrical projection around Y-axis. The center of
projection is computed in such a way that the angular width of the
mouth remains constant. The zero angle is always aligned with the
tip of the nose. These two rules, together with previous
normalization, ensure that the projected faces, shown in Figure 6C,
are already roughly aligned.

.

A B

C

Figure 6: Normalizing and projecting the face. A: The face in
initial state. B: Normalized face. C: The face projected into 2D.

Facial features are outlined for better visibility.

In the final alignment, we move the feature points of the target face
onto the corresponding feature points of the source face. The non-
feature points are then pulled into position by the feature points, i.e.
the position of each non-feature point is obtained by linear
interpolation of the three surrounding feature points using
barycentric coordinates.
We know the facial motion vector for each vertex of the source face,
and we have mapped these vertices into the 2D alignment space. To
obtain the motion vector for each vertex of the target face, we again
interpolate from three surrounding vertices of the source face using
the barycentric coordinates.
Once we have the facial motion vectors for each vertex of the target
face, we simply add them to the vertex positions and de-normalize
the target face. This is the animated target face.

Figure 7: Overview of Facial Motion Cloning

The Morph Target Compositor (see Figure 3) is an automatic tool
used to compose a facial model with animation based on a series of
separate VRML [26] files containing morph targets. This means that
each file contains the face with a different expression corresponding
to high- and low-level MPEG-4 FAPs. For full MPEG-4 FBA
compatibility, there is a total of 87 morph target files that correspond
to high- and low-level MPEG-4 FAPs: the neutral face, 6
expressions (anger, fear, surprise, disgust, happiness and sadness),
14 visemes and 66 low-level FAPs as defined in MPEG-4. The final
model that is used by the player is in a semi-proprietary format. It is
a standard VRML file containing the animation information in
Interpolator nodes. This information is registered in a compact way
that can be interpreted by the player. This means that the model will
be visible in any VRML player, albeit static; in order to view
animations the Facial Animation Player has to be used.
We present the results of cloning on three face models. All motions
were cloned from each model to each other model, producing a full
grid of cloned animated models for each motion. One such grid is
shown for the surprise expression in Figure 8. In this grid, the main
diagonal contains the source faces, and the rest of each row shows
the results of cloning from that source face to all other face models.
Therefore, looking at each row shows how an expression is cloned
from one face to all other faces; looking at each column shows how
the expression is cloned onto the same face from different sources.

 TARGET

SO
U

R
CE

 YO
D

A

 D
ATA

 C
AN

D
ID

E

YODA DATA CANDIDE

Figure 8: Cloning grid for surprise expression.

6. Producing Facial Animation Content
Choosing the MPEG-4 standard for the player makes it open for a
wide variety of content sources that can be mixed and matched from
various developers/vendors (see Figure 3). We foresee a broad
spectrum of solutions varying in quality, cost and production time.
Table 3 shows the foreseen classes of solutions with a comparison
along these three parameters. This is a very general estimation and
the particular implementations may vary, in particular as tools
become more and more advanced.
Text-to-Speech (TTS) combined with facial animation, usually
termed Visual TTS (VTTS), relies on phoneme timing information
from the TTS to produce lip synchronization. It is particularly
suitable for real time interactive applications as it can be fully

.

automated so it does not require human intervention. A drawback is
the lack of expressiveness as only lips are animated, though this is
usually improved by introducing random or rule-based facial
motion, eye blinks and expressions. Another issue is the low speech
quality of average TTS systems. Very high quality TTS systems are
already available, but they are fairly expensive.

Table 3: Comparison of facial animation content production
tools

Content
production tool

Producti
on cost

Production
time

Animation
quality

Visual text-to-
speech

low fast (real
time)

fair

Automatic
speech sync

low fast (near real
time)

fair

Video tracking medium medium medium

Optical tracking high long high

Manual
animation

very high very long very high

Automatic speech synchronization relies on audio signal
processing to synchronize the lips to the voice of a human speaker.
This improves the sound quality from TTS, but obviously eliminates
fully automatic applications as a human speaker is needed. The
expressiveness problem is similar to the VTTS case.
Video tracking of facial features has been a challenging problem for
a long time, and still remains without a full solution, though recent
implementations [1] approach real time tracking while keeping a
good tracking quality.
Optical tracking, using reflective markers glued on the face and a
battery of calibrated cameras, can give high tracking quality. It
involves expensive equipment and usually off-line processing
increasing production time.
Manual animation still produces the highest quality, and will
probably continue to do so in foreseeble future, albeit at a cost and
production time that limits its application scope.

7. Conclusions
We have presented a framework for implementing applications
involving talking virtual characters on the Web and mobile
platforms. The framework consists of interchangable modules
sharing standard data exchange formats (MPEG-4, VRML). It is
biased towards the computer animation community by building
upon the usual ways of face model/animation production. We
believe that this framework:

• should appeal to the computer animators, which is important
for quality content

• should easily adapt to a very broad range of applications with
varying requirements

• is simple, robust and has low resource requirements on the
target platform

• is easy to port to many different platforms

8. Acknowledgements
This research is partly supported by the VISIT programme of the
Swedish Foundation for Strategic Research (SSF).

9. References
[1] J. Ahlberg, “Using the Active Appearance Algorithm for

Face and Facial Feature Tracking,” 2nd International
Workshop on Recognition, Analysis and Tracking of Faces
and Gestures in Realtime Systems (RATFFG-RTS), pp. 68 -
72, Vancouver, Canada, July 2001.

[2] A.L.I.C.E. natural language A.I. parser and chat robot,
www.alicebot.org

[3] Kiyoshi Arai, Tsuneya Kurihara, Ken-ichi Anjyo, “Bilinear
interpolation for facial expressions and methamrphosis in
real-time animation”, The Visual Computer, 12:105-116,
1996.

[4] M.M.Cohen and D.W.Massaro, “Modeling Coarticulation in
Synthetic Visual Speech.” In M.Thalmann & D.Thalmann
(Eds.) Computer Animation'93. Tokyo: Springer-Verlag.

[5] Cosatto E., Graf H.P., “Sample-Based Synthesis of Photo-
Realistic Talking Heads”, Proc. Computer Animation ’98,
Philadelphia, USA, pp. 103-110.

[6] Chadwick, “Layered construction for deformable animated
characters”, Computer Graphics, 23(3):234-243,1989

[7] P. Eisert, S. Chaudhuri and B. Girod, “Speech Driven
Synthesis of Talking Head Sequences,” 3D Image Analysis
and Synthesis, pp. 51-56, Erlangen, November 1997.

[8] M. Escher, I.S. Pandzic, N. Magnenat-Thalmann, “Facial
Deformations for MPEG-4”, Computer Animation 98,
Philadelphia, USA, pp. 138-145, IEEE Computer Society
Press, 1998.

[9] Robert Forchheimer and Olov Fahlander, “Low Bit-rate
Coding through Animation”, Proceedings Picture Coding
Symposium 83

[10] Robert Forchheimer, Olov Fahlander and Torbjörn
Kronander, “A Semantic Approach to the Transmission of
Face Images,” Proceedings Picture Coding Symposium 84

[11] ISO/IEC 14496 - MPEG-4 International Standard, Moving
Picture Experts Group, www.cselt.it/mpeg

[12] Kalra P., Mangili A., Magnenat-Thalmann N., Thalmann D.,
Simulation of Facial Muscle Actions based on Rational Free
Form Deformation”, Proceedings Eurographics 92, pp. 65-69

[13] N. Magnenat-Thalmann, N.E. Primeau, D. Thalmann,
“Abstract muscle actions procedures for human face
animation”, Visual Computer, 3(5):290-297, 1988.

[14] Jun-yong Noh, Ulrich Neumann, “Expression Cloning”,
Proceedings of SIGGRAPH 2001, Los Angeles, USA

[15] Igor S. Pandzic, Joern Ostermann, David Millen, “Synthetic
Faces: What are they good for?”, The Visual Computer,
1999.

[16] Igor S. Pandzic, Gael Sannier, “From Photographs to
Interactive Virtual Characters on the Web”, Proc. Scanning
2000, Paris, France

[17] Igor S. Pandzic, “Life on the Web”, Software Focus Journal,
2(2):52-59, John Wiley & Sons, 2001.

.

[18] I.S. Pandzic,”A Web-Based MPEG-4 Facial Animation
System”, Proc. ICAV 3D 2001, demonstration at
www.icg.isy.liu.se/~igor/MpegWeb

[19] F.I. Parke, “A Parametric Model for Human Faces”, PhD
Thesis, University of Utah, Salt Lake City, USA, 1974.
UTEC-CSc-75-047

[20] F.I. Parke, “Parametrized models for facial animation”,
IEEE Computer Graphics and Applications, 2(9):61-68,
November 1982.

[21] F.I. Parke, K. Waters, “Computer Facial Animation”, A K
Peters Ltd. 1996., ISBN 1-56881-014-8

[22] Pearson, “Development in Model-Based Video Coding”,
Proc. of the IEEE, 83(6):892-906, June 1995.

[23] S.M. Platt, N.I. Badler, “Animating Facial Expressions”,
Computer Graphics, 15(3):245-252, 1981.

[24] Quartz Version 6.0, Symbian Technical Paper, Symbian
Developer Network,
www.symbiandevnet.com/techlib/techcomms/techpapers/pap
ers/v6/over/quartz/index.html

[25] Shout 3D, Eyematic Interfaces Incorporated,
http://www.shout3d.com/

[26] VRML, ISO/IEC 14772-1:1999,
www.web3d.org/fs_specifications.htm

[27] Tekalp M.A., Ostermann J., “Face and 2-D Mesh Animation
in MPEG-4”, Image Communication Journal, Tutorial Issue
on MPEG-4 Standard, Elsevier, 2000.

[28] D. Terzopoulos, K. Waters, “Physically-based facial
modeling, analysis and animation”, Journal of Visualization
and Computer Animation, 1(4):73-80, 1990.

[29] Weizenbaum, J., “ELIZA - A computer program for the
study of natural language communication between man and
machine”, Communications of the ACM 9(1):36-45, 1966.

[30] K. Waters, “A muscle model for animating three-
dimensional facial expressions”, Computer Graphics
(SIGGRAPH’87), 21(4):17-24, 1987.

[31] W Interactive SARL, www.winteractive.fr

